3rd Millennium Science
Volume 1, April 2013
3rd Millennium Science
– an international scientific journal

EDITORIAL MAIN OFFICE:

3rd Millennium Science / 2000-Talets Vetenskap
Flygeln
Parkgatan 2
360 51 Hovmantorp
Sweden

Phone: +46 - 478 - 417 37
E.mail: editor@3rdmisc.com
Homepage: www.3rdmisc.com

EDITORIAL STAFF:

Dr. Sc. Ingemar Ljungqvist
Group Editorial Director

Michael Zazzio
Editor-in-Chief and Art Designer

Bo Zackrisson
Technical Editor

© 2013, 3rd Millennium Science / 2000-Talets Vetenskap
Manuscript Submission

The journal of 3rd Millennium Science is an open access, interdisciplinary, international, scientific journal publishing articles in fields such as medicine, health care, psychology, environmental sciences, nutrition, chemistry, biology, physics, astronomy, geology and even archaeology. The aim of the journal is to publish important research and findings.

Contributors may submit articles to the editorial board via e.mail to editor@3rdmisc.com. Submitted articles are only received in digital form.

Fill in the 3rd Millennium Science Manuscript Submission Form manually and sign it. The form is found on the homepage of the journal. After filling it in, scan it or take a photo of it and save it as a jpg file and attach it to your submitted article.

The Copyright Agreement Form is available on the homepage and has to be filled in and sent to the editor after the paper is accepted for publication. Manucripts will not be published without this form, filled in and signed by all in the article participating authors. Send the form to editor@3rdmisc.com.

Preparation of Manuscript

Prepare manuscripts single spaced throughout the whole document. Leave margins on the sides, top, and bottom of the page. Rows must be 13-14 cm wide. Please submit text of manuscripts in Times or Times New Roman font, size 12 must be used throughout the manuscript. Manuscript pages should include page numbers, consecutively numbered.

The approximately one page cover letter/title page should include the title of the manuscript, authors' names and affiliations, the source of a work or study (if any), and a running title of a maximum of 50 characters.

Authors are encouraged to suggest the names of appropriate reviewers.

We require the full mailing address and complete contact information (telephone and e.mail address) for each listed author. Please include the address(es) either on a separate sheet. Please also indicate the corresponding author. All author names should be listed in the following order:

- First names (or initials, if used),
- Middle names (or initials, if used), and
- Last names (surname, family name).

Each author should list an:

- Associated department, university, or
- Organizational affiliation and its location, including city, state/province (if applicable), and country.

If the article has been submitted on behalf of a consortium, all author names and affiliations should be listed at the end of the article.

This information cannot be changed after initial submission, so please ensure that it is correct.

You should supply a cover letter that:

- Concisely summarizes why your paper is a valuable addition to the scientific literature
- Briefly relates your study to previously published work
- Specifies the type of article you are submitting (for example, research article, systematic review, meta-analysis, clinical trial)

All persons designated as authors should qualify for authorship, and all those who qualify should be listed. Each author must have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Those who contributed to the work but do not qualify for authorship should be listed in the acknowledgements.

When a large group or centre has conducted the work, the author list should include the group name as well as the individuals whose contributions meet the criteria defined above.
One author should be designated as the corresponding author, and his or her e.mail address or other contact information should be included on the manuscript cover page. This information will be published with the article if accepted.

Abstract

The second page should consist of a structured abstract of not more than 250 words which should be self-explanatory without reference to the text. The papers should follow this format:

- Abstract
- Introduction
- Materials and methods
- Results
- Discussion
- Conclusion (and summary)
- Acknowledgement
- References.

The structured format for the abstract consists of:

- The objective of one or two sentences
- The background data is a short paragraph describing the present status of the field
- Methods is a statement of the plan and/or methods used in the study
- The results is a concise summary of the essential features verified by the data; and
- The conclusions is a brief description of the objective findings of the study. References are not permitted in the abstract.

Guidelines on Length

Manuscript length varies according to the type of the paper, subject matter and authors' judgement. Original research papers would normally be less than 5,000 words; case studies less than 3,000 words and short reports should be less than 2,000 words with no more than three tables or illustrations and up to twenty references.

We are happy to entertain unsolicited editorials of up to 1,000 words, which will be peer reviewed. Letters to the editor should be no longer than 550 words including no more than 10 references except in exceptional circumstances when the argument for this should be laid out in an accompanying letter. Two tables or illustrations may accompany letters. Personal view papers, drug/therapy/intervention reports, critical review and debate and reports drawing attention to potential clinical problems will be welcomed. Please follow the requested style to avoid any delays in publication.

The articles must be submitted in Microsoft Word 6.0 (*.doc), Word 95 (*.doc), Word 97 (*.doc) or in rtf file format (*.rtf).

Tables and Figures

All kinds of tables must be submitted as stand alone jpg files and cannot only be embedded in a text file. Tables can also be submitted as Microsoft Word or Excel objects embedded in the manuscript in position relative to text. Tables should be cited in the text in order and identified as Table 1, Table 2, etc. Along with the table number each table should have a title.

Figures

All kinds of figures must be submitted as stand alone jpg files and cannot be inserted in a text file. Please follow the caveats below when submitting illustrations:

- Do not embed figures in Microsoft Word.
- Do not prepare any figures in Microsoft Word.
- Prepare figures in jpg format.
- Submit Line illustrations at 1,200 dpi.
- Black and white halftones and colour art must be submitted at 600 or 1,200 dpi.
- Colour art must be saved as RGB files.

Please name your artwork files with the submitting author's name, e.g. Smith Fig.1.jpg. If photographs of patients are used, either the subjects should not be identifiable (blurred) or their pictures must be accompanied by a written permission to use the figure. Legends for illustrations should be typewritten on a separate sheet with numbers corresponding to the figures.
Abbreviations
Abbreviations of journal titles should follow the style of Medline or the Council of Biology Editors Style Manual (Arlington, VA, American Institute of Biological Sciences).
· Abbreviations should be kept to a minimum and defined upon first use in the text.
· The first time an uncommon abbreviation appears, it should be preceded by the full name for which it stands.
· Non-standard abbreviations should not be used unless they appear at least three times in the text.
· Standardized nomenclature should be used as appropriate, including appropriate usage of species names and SI units.

References
References must be typed single spaced and numbered consecutively as they appear. Those appearing for the first time in tables and figures must be numbered in sequence with those cited in the text where the table or figure is mentioned. List all the authors when there are six or fewer. When there are seven or more, list the first three, then "et al.”.

Sample references are:

Permissions
Materials taken from other sources must be accompanied by a written statement from both author and publisher giving permission for reproduction. If clearances are required by the author's institution, statements concerning such clearance should be provided in the manuscript. Obtain and submit written permission from authors to cite unpublished data or papers still in press.

If the article requires to be sent using many e-mails (e.mail maximum size is 18 Mb) then number the e-mails as follows: e.mail 1, e.mail 2, etcetera.

If a scientific study on human subjects or human tissue requires ethic approval the approval itself must be sent to the editorial board along with the rest of the submitted scientific article material.

Prior to submission, authors who believe their manuscripts would benefit from professional editing are encouraged to use language-editing and copy-editing services (this is also provided by the 3rd Millennium Science). Obtaining this service is the responsibility of the author, and should be done before initial submission. These services can be found on the web using search terms like "scientific editing service” or "manuscript editing service”. Submissions are not copyedited before publication.

Submissions that do not meet the publication criterion for concise British English language standards may be rejected.
Peer reviewers

3rd Millennium Science is looking for peer reviewers with expert knowledge in variety of scientific areas such as medicine, psychology, environmental sciences, chemistry, biology, physics, astronomy and even archaeology.

If you are a scientist interested in peer reviewing for the 3rd Millennium Science, then please fill in the peer review form found on the homepage of the journal of 3rd Millennium Science and send the form to us via e.mail as a jpg file photo or scanned jpg file.

Translation services

Prior to submission, authors who believe their manuscripts would benefit from professional editing are encouraged to use language-editing and copyediting services (this is also provided by through the editorial board at the scientific journal of 3rd Millennium Science). Obtaining this service is the responsibility of the author, and should be done before initial submission. Submissions are not copyedited before publication.

For Swedish scientists who themselves are not able to write their scientific articles in English, the 3rd Millennium Science editorial board is offering translation services.

For scientists who have written their scientific articles in English but who want to get their articles translated into Swedish and after acceptance also have it published in the Swedish online open access version of the 3rd Millennium Science, can via the editorial board get their articles translated into Swedish using the available translation services found via the editorial board at the 3rd Millennium Science.

The translation services cost has to be paid in advance and must be ordered by the author(s) prior to submission of the article. The cost for translation is SEK 1,000 per page.
Editorial

Welcome to the new scientific journal – the 3rd Millennium Science

3rd Millennium Science is an interdisciplinary, international, scientific journal aiming to publish peer reviewed, scientific articles in the fields of medicine, health care, psychology, environmental sciences, nutrition, chemistry, biology, physics, astronomy, geology and even archaeology in an open access format.

It is our belief that the scientific arena needs many more international journals and the journal of the 3rd Millennium Science will be one of those and mainly focus on medical issues.

The medical field has been developing extremely rapidly during the past fifty years. The paradigm of the medical world has constantly been undergoing an everlasting metamorphosis during that time period. Knowledge that was totally unbelievable and things that were completely unknown and unreachable at the end of the second world war are nowadays generally accepted as naturally occurring phenomena. This statement is obviously valid for all scientific areas.

The scientific world is undergoing great changes. Profound treatment methods are intermittently replaced with even better, modern methods. The scientific area is constantly being divided into even more subspecialties and researchers are nowadays more often than before seeking knowledge at microscopic levels, not to mention at nano levels and in the future probably even at piko levels.

Despite those rapid changes the universe is still the same as it very much has been for hundreds of millions of years. The expansion of the universe does however at the moment not seem to be as meaningful as the expanding knowledge of human mankind. The universal expansion and what is related to it may however be much more important in the future. Human mankind is rapidly learning and developing its knowledge in astronomy and such knowledge may also contribute to our survival that very day when we are forced to leave our blue planet.

Until then it is of utter importance that we are seeking and finding new knowledge supporting a healthier planet housing healthier citizens.

Michael Zazzio
Editor-in-Chief
A breast cancer tumor consisted of a spore-sac fungus (Ascomycotina)

Erik Enby, Med. Dr. *

* Dr Enby, Göteborg/Gothenburg, Sweden

Received 9 January 2013; received in revised form 4 February 2013; accepted 18 February 2013
Available online 5 April 2013

Abstract

Introduction: Is cancer caused by cell degeneration or may it be that tumor formation in such cases may depend on various forms of plant infestation (e.g. mycoses)? My previous research and its findings have shown that microbiological growth occurs in the calluses that occur in tissues associated with cancer diseases. Other researchers have also observed non-human growth in cancer samples, but they have assumed that the samples must have been contaminated. Materials and methods: At the Department of Pathology at the Sahlgrenska University Hospital in Gothenburg a hard lump in one of a female patient's breasts was discovered. The diagnosis breast cancer was determined and the breast was removed surgically. The tumor found during surgery was divided into six samples that were prepared for microscopy. Results: The microscopy revealed structures in the samples that were consistent with identical structures found in spore-sac fungi. The probability that the structures found in this study would not be parts of a spore-sac fungus is miniscule. Conclusion: The morphological structures in the samples in this study are fully consistent with the characteristic features of the spore-sac fungus division. The depicted findings thus show that cancer can be fungal growth. It is therefore necessary to widen cancer research and the paradigm it is based upon and involve mycologists in it.

Keywords: Cancer; Breast cancer; Fungi; Fungal growth; Ascomycotina; Mycology

1. Introduction

Is cancer caused by one, for various reasons, disrupted cellular machinery of a previously healthy cell which thereby has increased its proliferation rate and thus has the ability to cause growth (tumor formation) in a tissue, or may it be that tumor formation in such states of the disease may depend on various forms of plant infestation (e.g. mycoses), which suddenly takes hold and begins to grow in a tissue and brings along changes of and in it?

I have for special reasons been given further causes to investigate whether it would be possible to relate to the latter way. My previous research and its findings have clearly shown that microbiological growth occurs in the calluses that occur in tissues associated with cancer diseases 1, 2. Other researchers have also observed non-human growth in cancer samples, but they have assumed that the samples must have been contaminated.

2. Materials and Methods

A female patient discovered a hard lump in one of her breasts. At the Sahlgrenska University Hospital in Gothenburg the diagnosis breast cancer was determined and quite soon thereafter the breast was surgically removed and chemotherapy was started. In connection with the operation I managed to get six cancer samples that had been prepared at the Department of Pathology, at the Sahlgrenska University Hospital. The samples showed how this cancer appeared morphologically. I could immediately see that the samples consisted of a spore-sac fungus that grew in the sample which as a whole appeared to consist of such a fungus 3.

The microscope used in the study was an Olympus Inverted System Microscope IX70, equipped with a 100 Watt halogen lamp. The microscopy was performed in light field and interference contrast. The pictures were taken with a Nikon Coolpix 990 digital camera.
Later on, the samples were demonstrated at Radiumhemmet at the Karolinska University Hospital in Solna/Stockholm where Professor Lindskog argued that what was seen in the sample were cancer cells. However he suggested a contact with a mycologist for further analysis and judgment of the samples. Such an examination and analysis was then carried through at the Department of Biological and Environmental Sciences at the University of Gothenburg. There, the staff have experience from studying different forms of fungal growth. The researchers at this botanical institute judged that the samples in its entirety could be composed of a spore-sac fungus.

3. Results

For those who don’t know anything about and do not have any experience of mycology, it is almost impossible to understand how anyone can argue that a tumor tissue – as in this case – can consist of a spore-sac fungus. To get the idea that it could be that way, it is necessary to be able to know the way of development of the spores of such fungi. Since this was familiar to me, I found during the microscopy of the cancer samples that the morphological structure and the architecture of the samples in all probability showed that the samples contained something that could be a form of spore-sac containers with spore-sacs, which is typical for medically important spore-sac fungi 4,5.

The morphological structures and architecture of the samples presented in this article are displayed in the five following figures.

Figure 1. 100x magnification. Dyeing: Warthin-Starry. The picture shows a section of a container in pristine condition, lying in the solid tumor tissue (in mycology called an ascocarp, in the shape of a cleistothecium – a ball-shaped container), such a container can contain millions of small, circular structures.

Figure 2. 600x magnification. Dyeing: Warthin-Starry. The same container as in Figure 1 is depicted in Figure 2. There is a number of small particles visible in some of the round structures in this container. To the right, at the bottom of the picture, seeding of detached, somewhat smaller particles is seen in the tumor tissue that is surrounding the container.

Figure 3. 600x magnification. Dyeing: Warthin-Starry. Detached small, round structures are displayed. Small particles are visible in several of these circular structures. Seeding of similar particles are visible in the surrounding tumor substance, outside the exposed structures.

Figure 4. 100x magnification. Dyeing: Fites. A section through six clearly visible, separated containers resting in the surrounding tumor substance and containing myriads of similar, small, round structures such as those displayed in Figure 1.
4. Discussion

The tumor morphology in the figures 1, 2, 3, 4 and 5, is displaying all the characteristics of the medical spore-sac fungi. Analogously to how such fungi are described in the mycological literature, the above described containers with small, round structures look just like ascocarps, formed as cleistothecia (ball-shaped spore-sac containers). The small, round structures in the ascocarps look like spore-sacs (asci) and the small particles in the asci, in their turn, look like spores. In Figure 3 the small spore-sacs are seen, freely lying in the tumor substance, which is another unique feature of spore-sac fungi. Overall, this should be the last stage in the process of development of spores in a spore-sac fungus. The spores that seem to leave the spore-sacs (see Figure 2, 3 and 5) and which also occur in the surrounding tissue of the ascocarps, may be spores that have spread from the spore-sacs out to the surrounding tissue.

The signs described in this article that a tumor tissue could be the result of a growing spore-sac fungus mean that the tumor substance in such cases would host ascocarps which, so to speak, are held in place by the tumor substance itself. To understand it all a little better, it can be compared to the way how a nuclear house (core) in an apple is held in place by the surrounding fruit substance.

The spores have a single set of chromosomes and also have the ability to create mycelia containing nuclei of either female or male sex. Therefore a mycelium can fertilize another mycelium, which occurs when a male mycelium creates a connection (a small bridge) to a female mycelium. Through this connection a nucleus migrates from a cell in the male mycelium over to the female mycelium to fuse with the nucleus of one of its cells. This is an example of such a sexual reproduction that occurs in spore-sac fungi. Such a type of fusion is followed by a number of divisions of the new nucleus. The division process leads to eight new nuclei formed from the original nucleus and represents the number of particles or spores that are finally to be found in the spore-sacs.

The substance that contains all ascocarps is formed by the spore-sac fungus itself and the substance consists of a vegetative tissue material that in the sick patient's tissues is causing calluses – tumors – containing all spore-sac containers (Figure 4). Overall, this can be said to be the fruiting body of the spore-sac producing fungus. The fruiting body grows slowly into itself and can in time be palpated as a resistance in the tissue. This is reminiscent of how a truffle mushroom grows in the form of clods below the soil surface. Is this context it should be of interest as the truffle mushroom also is a spore-sac fungus.

It has not been possible to find the associated mycelia to such a spore-sac fungus but doing so is not necessary in order to be able to definitively confirm that what was found in this patient and diagnosed as cancer growth was actually a spore-sac fungus.

5. Conclusion

What, in this case by routine, was classified and described as cancer can very well be mycoses, which does not seem to be known by the publicly funded healthcare.

The probability that the, in this scientific article, depicted structures do not constitute a spore-sac fungus is extremely small. The morphological structures in the samples in this study are fully in accordance with the characteristic features of spore-sac fungi. The depicted findings thus show that cancer tumors very well can be fungal growth, a statement also supported by the obvious smell of decay that large tumors bring along. Therefore, health care staff and medical researchers must be open-minded about the possibility that cancer may very well consist of fungi. Thus there is reason to involve mycologists in cancer research.
6. References

Corresponding author:

Erik Enby
Karl Johansgatan 49E
414 55 Göteborg/Gothenburg
Sweden
Phone: +46 31 42 31 98
E.mail address: erik@enby.se